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The perturbation theory for the Landau-Lifschitz equation for isotropic chain with
correction, which is based on the inverse scattering transform (IST), is developed
to treat Landau-Lifschitz equation for a spin chain with axis asymmetry. The time-
evolution equation of parameters and a formula for the first-order correction is given
by treating the equation with axis symmetry as a perturbation to the isotropic equation.
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1. INTRODUCTION

Most of nonlinear equations can not be solved exactly directly, and a lot of
methods are developed to give the solutions of the equations. Perturbation theory
is one of them, which also extends the application of nonlinear equations. After
inverse scattering transform was performed to solve the isotropic Landau-Lifschitz
equation (Dodd et al., 1982; Laksmanan, 1977; Fogedby, 1980), it remains a lot
of works. The equation with axis asymmetry as well as full anisotropy haven’t
been solved completely by IST (Borovik, 1978; Bolovik and Kulinich, 1984). It
seems solutions of these cases were not found exactly. Hence, we tried to treat the
extra term as a perturbation to the isotropic equation. Two systematic perturbation
methods, the method based on the inverse scattering transform (Kaup and Newell,
1978c; Karpman, 1979; Kivshar and Malomad, 1989) and the direct method based
upon the theory of linear partial differential equations (Mjølhus, 1989; Mjølhus
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and Hada, 1997; Faddeev and Takhtajan, 1987; Chen et al., 1998; Kivshar and
Davies, 1998) have been well established and developed for completely and nearly
integrable systems. The latter was firstly proposed by Mclaughlin and Scott in 1978
to deal with Sine-Gordon equation (Kaup and Newell, 1978a,b). At that time, in
order to emphasize the difference between the solutions of direct perturbation
theory and those based on the IST method, they tried to avoid the results derived
from IST. Then the Green function method was produced to solve the perturbation
(Gerdjikov et al., 1980; Feng-Ming et al., 2004; Hao and Nian-Ning, 2003). A
series of problems in the perturbation theory of the nonlinear equations have been
solved with the method mentioned above. We attempted to deal with perturbation
of the L-L equation with the direct perturbation theory, however it is difficult to give
the exact expression of the linearized operators because of the three parameters
(S1,S2,S3) of the spin chain. In this article, we construct the perturbation theory
based on inverse scattering transform method. We treat the equation with axis
symmetry as a perturbation to the isotropic equation. And we give the evolution
equations of soltion parameters and the formula for calculating the first-order
correction which can be studied further.

2. LANDAU-LIFSCHITZ EQUATION AND SOME RESULTS
OF THE IST METHOD

The Landau-Lifschitz equation for a isotropic spin chain can be written as

St + S × Sxx = 0 (1)

The Lax representations of the unperturbed isotropic equation are

∂xψ(x, λ) = Lψ(x, λ), L = −iλS · σ (2)

And

∂tψ(x, λ) = Mψ(x, λ), M = −i2λ2S · σ + iλσ · (S × Sxx) (3)

With asymptotic solutions of Eqs. (2) and (3), the usual Jost solutions are defined
as

�(x, λ) = (ψ̃(x, λ), ψ(x, λ)) (4)

�(x, λ) = (φ(x, λ), φ̃(x, λ)) (5)

As usual, the monodramy matrix T (λ) is introduced

�(x, λ) = �(x, λ)T (λ), T (λ) =
(

a(λ) b̃(λ)
b(λ) ã(λ)

)
(6)

ψ(x, λ), φ(x, λ) and a(λ) are analytic in the upper half plane of complex λ; ψ̃(x, λ),
φ̃(x, λ) and ã(λ) are analytic in the lower half plane of complex λ. Usually b(λ)
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and b̃(λ) cannot be analytically continued outside the real axes. The Jost solutions
in NLS+ equation have some properties, such as

ψ̃(x, t, λ) = −iσ2ψ(x, t, λ); φ̃(x, t, λ) = iσ2φ(x, t, λ) (7)

and

ã(λ) = a(λ), b̃(λ) = −b(λ) (8)

where a(λ) = ∏n
1

λ−λn

λ−λ̄n
, when a(λ) vanishing only at λ = λn, the usual IST method

yields the single-soliton solution and the corresponding Jost solutions and their λ

derivatives.

ψ1(x, λ1) = −1

2

λ1

λ̄1
eiλ1xsech�e−i�, ψ2(x, λ1) = 1

2
eiλ1xsech�e� (9)

φ1(x, λ1) = 1

2

λ1

λ̄1
e−iλ1xsech�e−�, φ2(x, λ1) = −1

2
e−iλ1xsech�ei� (10)

And their derivatives of λ

ψ̇1(x, λ1) = i

(
x + 1

2ν

λ̄1

λ1

)
ψ1(x, λ1);

ψ̇2(x, λ1) = i

(
x + 1

2ν

λ̄1

λ1

)
ψ2(x, λ1) − i

1

2ν

λ̄1

λ1
eiλ1x (11)

φ̇1(x, λ1) = −i

(
x − 1

2ν

λ̄1

λ1

)
φ1(x, λ1) − i

1

2ν

λ̄1

λ1
e−iλ1x,

φ̇2(x, λ1) = −i

(
x − 1

2ν

λ̄1

λ1

)
φ2(x, λ1) (12)

In the equations above, we use the flowing expressions � = 2µx + 4(µ2 −
ν2)t + φ10, � = 2ν(x − x1 + 4µt)

In order to satisfy the second Lax Equation (3), the Jost solutions should be
corrected as

φ(x, t, λ) → h(t, λ)φ(x, t, λ), φ̃(x, t, λ) → h−1(t, λ)φ̃(x, t, λ) (13)

ψ̃(x, t, λ) → h(t, λ)ψ̃(x, t, λ), ψ(x, t, λ) → h−1(t, λ)ψ(x, t, λ) (14)

Where h(x, t, λ) = e−i2λ2t .

3. PERTURBATION THEORY BASED ON IST METHOD

The perturbed Landau-Lifschitz equation for isotropic spin chain can be
written as

St + S × Sxx = εP(S) (15)
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where ε is a small parameter and P(S) is a function of S characterizing the
corrections.

The main idea of the perturbation theory base on the inverse scattering trans-
form (IST) (Gerdjikov et al., 1980) is to abandon the second Lax equation while
preserving the first one. Only the last part of IST which decides the time de-
pendence of the scattering date needs to be rebuilded. The new result should be
distinguished to the origin one within a small quantity of the order of ε.

The L-L equation for a spin chain with easy axis can be written as

St + S × Sxx + S × JS = 0, J = diag (0, 0, J ), J > 0 (16)

If J is a small quantity, J → ε, the last term of Eq. (16) can be treated as
perturbation. Considering Eq. (15), have

εP(S) = −S × JS (17)

Take εQ(s) = −iλσ · εP (s), which is from the perturbation theory of IST
(Kaup and Newell, 1978a). So

εQ(s) = iλσ · (S × JS) = −λJ

(
0 q

−q̄ 0

)
(18)

Considering the case of single soliton, q = S3(S1 − iS2) = cos θ sin θe−iϕ ,
cos θ = 1 − 2ν2

(µ2+ν2) sech
2�, ϕ = � + arg tanh( ν

µ
tanh �).

From the perturbation theory of IST, the basic equations of the perturbation
theory for isotropic L-L equation are obtained as follows

at (t, λ) = −
∫ ∞

−∞
ψ(x, λ)T iσ2G(x, λ)φ(x, λ) dx (19)

bt (t, λ) − i4λ2b(λ) =
∫ ∞

−∞
ψ̃(x, λ)T iσ2G(x, λ)φ(x, λ) dx (20)

where G(x, λ) = {−iλt (S · σ ) + εQ(S)}h(t, λ)φ(x, λ), if ε → 0, the result gives
the one that the unperturbed equation gives.

For the bounded state, a(λn) = 0, at (λn) = 0 and φ(x, λn) = bn(t, λn)
ψ(x, λn), These conditions indicates that the perturbation term is so small that
it doesn’t change the bounded state solution of the scattering problem as well as
the soliton solution of the nonlinear equation. All the functions in (20) can be
analytic continuously to the upper plane of the complex λ, therefore it’s still valid
in the limit of λ → λn, so we have

λnt = iε

ȧ(λn)bn(t)

∫ ∞

−∞
φ(x, λn)T σ2Q(x)φ(x, λn) dx (21)
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Where we use the expression

ȧ(λn) = −i2
∫ ∞

−∞
φ1(x, λ)φ2(x, λ)dx (22)

And

bnt (t) − i4λ2
nbn(t) = bn(t)

ȧ(λn)

∫ ∞

−∞
{φ̇(x, λn) − bn(t)ψ̇(x, λn)}T

× iσ2G(x, λn)ψ(x, λn)dx (23)

We can simplify the equation above by proofing the first part of the integration
arising from the first part of G(x, λn). In the case of discrete spectrum, G(x, λn) =
−iλntσ · S + εQ(s), which is different from that of the continuous spectrum. So,
Eq. (23) is reduced to

bnt (t) − i4λ2
nbn(t) = ε

ȧ(λn)

∫ ∞

−∞
{φ̇(x, λn) − bn(t)ψ̇(x, λn)}T

× iσ2Q(x)φ(x, λn)dx (24)

It is obviously that it gives the result as ε → 0.

4. EFFECTS OF PERTURBATION ON THE SOLITON PARAMETERS

From Eq. (21), we can express λ1 = µ + iν, noticing ȧ(λ1) = 1
i2ν

and
2νdx = d�, we have

λ1t = iλ1J

∫ ∞

−∞
{qψ2(x, λ1)φ2(x, λ1) + q̄ψ1(x, λ1)φ1(x, λ1)}d� (25)

Substituting the expressions of Jost solutions, taking η = arg tan( ν
µ

tanh �),
w = arg tan ν

µ
, it derives

λ1t = −iλ1J

∫ ∞

−∞

1

8
sin 2θsech2�

(
e�e−iη + e−�ei(η+4ω))d� (26)

In another hand, we derive the real and image part of the integration above.

µt = J
16

15

µ2ν(µ2 − ν2)(5µ4 − 2µ2ν2 + ν4)|ν|
(µ2 + µ2)4|µ| (27)

And

νt = −J
2

15

µ(µ2 − ν2)(3µ2 − ν2)(5µ4 − 10µ2ν2 + ν4)|ν|
(µ2 + µ2)4|µ| (28)

Introduce two parameters ξ and δ which satisfy

� = 2ν(x − ξ ), � = µ

ν
� + δ (29)
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We know in the unperturbed case, ξ = x1 − 4µt , δ = 2µx1 − 4(µ2 +
ν2)t + φ10. With the new notations, b1(t, λ1) can be written as

b1(t, λ1) = e−i(2µξ−δ+π)e2νξ (30)

Thus the left hand of Eq. (24) gives

−i2(λ1t + λ1ξt + iδt ) − i4λ2
1 (31)

The integration of Eq. (24) gives ξt and δt by substituting the derivatives of
the Jost solutions.

ξt = −4µ + J
4

3

µ3ν2|ν|
(µ2 + ν2)3|µ| (32)

And

δt = −4(µ2 + ν2) + J
2

3

µ2(3µ2 + ν2)|ν|
(µ2 + ν2)2|µ| (33)

We can use the method of the derivative expansion, the independent variable
t is transformed into several variables by

tn = εnt (34)

where each tn is an order of ε smaller than the previous time. The time derivatives
are replaced by the expansion

∂t =
∞∑

n=0

εn∂tn (35)

At the same time the dependent variable is expanded in an asymptotic series.
As ε is a small quantity, we can express each parameter as the approximation of
one order of ε

ξ = ξ0 + εtξ1, δ = δ0 + εtδ1 (36)

Consequently, we have

µ = µ0 + J
16

15

µ2
0ν0

(
µ2

0 − ν2
0

)(
5µ4

0 − 2µ2
0ν

2
0 + ν4

0

)|ν0|(
µ2

0 + µ2
0

)4|µ0|
t (37)

ν = ν0 − J
2

15

µ0
(
µ2

0 − ν2
0

)(
3µ2

0 − ν2
0

)(
5µ4

0 − 10µ2
0ν

2
0 + ν4

0

)|ν0|(
µ2

0 + µ2
0

)4|µ0|
t (38)

ξ = ξ0 − 4µ0t + J
4

3

µ3
0ν

2
0 |ν0|(

µ2
0 + ν2

0

)3|µ0|
t (39)
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δ = δ0 − 4
(
µ2

0 + ν2
0

)
t + J

2

3

µ2
0

(
3µ2

0 + ν2
0

)|ν0|(
µ2

0 + ν2
0

)2|µ0|
t (40)

As J → 0, the equations for the slow variation of the spectrum parameter
reduce the unperturbed case.

5. THE FIRST-ORDER CORRECTION FOR
THE ADIABATIC SOLUTION

By IST method we get the expression of the first-order correction of the
adiabatic solution for isotropic L-L equation

δu(x, t) = 1

π

∫ ∞

−∞

λ̄1

λ′ r(λ′)ψa
1 (x, λ′)2dλ′ + 1

π

∫ ∞

−∞

λ̄1

λ′ r(λ′)ψa
2 (x, λ′)2dλ′ (41)

Where, r(λ′) = b(λ′)
a(λ′) , a(λ) = λ−µ−iν

λ−µ+iν
, b(λ′) is from the correction of the adia-

batic solution which is valid in the case of reflectionless for unperturbed condition.
And b(λ′) can be obtained from Eq. (20).

By some gauge transform (Huang, 1996) L-L equation can be equivalence
to nonlinear Schrödinger (NLS) equation, therefore their Lax equations can be
equivalence. The first Lax equation of NLS equation and L-L equation can be
written respectively as

LNLS = −iλσ3 +
(

0 u

−ū 0

)
(42)

And

LL−L = −iλ(S · σ ) (43)

Here, u is the adiabatic solution. Combining Eqs. (42) and (43), we have the
result as following because of the equivalence between the adiabatic solution of
NLS equation and that of L-L equation.

(
0 u

−ū 0

)
= iλ

(
1 − S3 S1 − iS2

S1 + iS2 1 + S3

)
(44)

So it is obtained the correction of the adiabatic solution, for the reason of
|S1|2 + |S2|2 + |S3|2 = 1

δu = iλ(δS1 − iδS2) (45)

From Eqs. (41) and (45) we can get δS1 and δS2.
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6. CONCLUSION

In this paper, IST method is developed to study the perturbation theory of L-L
equation with ease axis. The theory is applied to the description of soliton evolution
in the presence of perturbation. It is shown a small perturbation leads to such
effects as: (1) a slow change of soliton parameters; (2)a deformation of its shape.
All these effects are investigated in detail for the Korteweg-de Vries, modified
Korteweg-de Vries, and nonlinear Schrödinger equations to which perturbation
terms of general form are added (Karpman and Maslov, 1978). In this article,
We show the time dependence of the spectrum in the case of single soliton, by
treating the asymmetry axis as a perturbation to isotropic spin chain, and we give
the expression of the correction of the adiabatic solution of L-L equation. So we
can consider the equation with easy plane by the same technique, which can also
be extended to the applications of other nonlinear equations (Ao and Yan, 2005).
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